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1. Consider a bar of variable rigidity under the action of an axial load 
Pf(x); the function f(x) is assumed to be steprise continuous and posi- 
tive. 

It has been shown by Trefftz 11 1 in 1923 that the deflections y(x) of 
such a bar satisfy the homogeneous integral equation 

Y’ (4 = p s Kll (x, 4 Y' (4 da (sh w (4 = f (4 d 4 (1.1) 
0 

where K(x.8) is the influence function of the bar, 1 its length and 
RI1 (x,~) = a*K/&dr. 

It is known that the kernel of equation (1.1) is positive definite 
[2 1. Consequently. all of its eigenvalues are positive. These values PC 

are the “critical forces’ of the bar, while the eigenfunctions yk’(x) = 
zg(x) determine the possible equilibrium forms corresponding to those 
gcritical forces*. 

In the cases when (al one end of the bar is pinjointed, while the 
other end is free, and (b) one end is rigidly built in, while the other 
end is pinjointed, the function K,,(r, I) represents Green’s function of 
the Sturm-Liouville system; it becomes, therefore, oscillatory. Conse- 
quently, in the case of the end-conditions just indicated the functions 
z~(L) must comply with the complex of theorems elated to oscillatory 
properties. 

Other types of end conditions rewire special consideration. 

2. Take the case when the bar is hinged at both ends. In this case, 
the function Kll(z, s) will fulfil all conditions satisfied by the 
generalized Green’s function of the boundary value problem 

(EIz’)’ =-Pf(x)z, x’ (0) = 2’ (1) = 0 (2.1) 
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Therefore, all eioenralues of (2.11, except zO - 1 -l/2 , will also be 

eigenfunctions of equation (1.1). 

Let us write (2.11 in the form 

(EW)’ - B/z = - Pfz, 2’ (0) = 2’ (I) = 0 (2.2) 

with 6 c Pi and the notation p = P + 6. No+ P = 0 is no longer an eigeu- 
value for (2.21, therefore we can form for it Green’s function G(x, a) 
in the usual sense. The kernel G(s, rl becomes oscillators, because it 
is posltfve-definite and represents Green’s function of the Stun-Liou- 
ville problem. 

We now form the kernel 

(2.3) 

Since 
1 

s Kl, (2, s) ds = 0 
0 

(2.3) has the same eigenfunctions as the kernel C(x, 11. They will differ 
by the factor 1 f(x I]-“‘. Thus it is clear that, although the kernel 
KIi(x, 11 is not oscillatory in the case of the end-conditions under con- 
sideration, a system of eigenfunctions can be obtained, possessing the 
complex of oscillatory properties, If we add to the sigenfunctions of 

K,,(r, t) the function [ Zf(xl ]-i” = Z’(X) as a first efgenfunction, 
while the numbers of all other functions are increased by one. 

Starting from this result we will show that in the case of 8ufficientlY 
small 8, the kernel (2.3) beooses oscillators. 

Indeed, on the basis of the above proof, the 

Z,(X)* . . . of the kernel (2.3) form a Chebrshev 
determinant 

eigenfunctions so (x1, 
system; therefore the 

h ! 
2” (x) 22 . . . 2, 

Xl x2 . . . xn 1 
must differ from zero for any xi < . . . < X, of the interval (0. I). 
Using the known expansion 13 1 for positive-definite kernels, we have 

* Xl 
Q 

t 

z2...xn \ 

= 
Xl x2...xn f 

r: (2.4) 
I O<i,c:.,. <i, 

pi,. .i_ pin h? ( ;z* * *“in) >o 
. ..Zn 

Furthermore we form the function 

Q,(s) = i F& (3, sx-) = i FkKlr (2, 8x1 + a (2.5) 
k=l X-l 18 n-s, 
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In the case of sufficiently small 6 and u # 0, the 
have no more than n - 1 sign changes, and this Is 

The conclusion holds true in all other cases of 

function (2.5) will 
what is required. 

end conditions as well. 

3. Take the case when the first end of the bar is clamped while the 
second end is hinged. For such a bar the influence function Kil*(~, 8) 
of the rotation angles can be considered as the tangent of the rotation 

angle of the cross section at the point I for the case of a bar with 
hinged ends, acted upon by a concentrated unit couple at the point s and 
a couple of some moment at the point 1. This permits to obtain the rela- 
tion between Kli l (x, 8) and Kll(~, I) as follows: 

Ku+ 
t2, 

1 
4 

= 
K11 (I, 1) 

I Jfll(2, 4 Kll (2, 0 
Kll (I, s) Ku VI 0 I 

Ke shall establish the oscillatory character of the function 

as we have done in the case of hinged ends. 

On the basis of the formula (3.1) we 

where 

R (x, 4 - J’-l (4 f (4 &I (2, 4 + 
i 

- 
13 rt (4 f (4 

Using Sylvester’s identity for determinants we find 

The determinant 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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is a polynomial of the n-th degree in terms of 6-l. while the remaining 
expression in the right-hand member of (3.4) is a polynomial of the 

(n - ll-th degree. In the case of sufficiently large values of 6-l, the 
sign of the determinant (3.41 must be, therefore, identical with that of 
(3.5). We know, however, that in the case of a sufficiently large a-‘, 
the determinant (3.5) is positive; therefore (3.4) will be positive as 
well. and this is what is required. 

If Kil(x, J) is represented by the influence function of the rotation 
angles for a bar with one end hinged and the other clamped, while Kll*(z,s) 

is represented by the influence function of the rotation angles for the 
bar with clamped ends, then the above consideration leads to the further 
conclusion that also in the case of clamped ends and of sufficiently 
large values of 6-l, the determinant (3.4) will be positive. 

Thus, the oscillatory character of the function (2.3) is established 
for the case of the end-conditions considered in this Section. The con- 
clusion applies also to the case of clamped and elastically built-in ends. 

Therefore, it can be stated that, with respect to the “critical for- 
ces” and the derivatives of the functions determining the equilibrium 
forms of the bar, the latter possess the same oscillatory properties as 
in the case of a bar with hinged ends. 
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